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THE ASYMPTOTIC DISTRIBUTION OF THE S-GINI INDEX
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Summary

Several generalizations of the classical Gini index, placing smaller or greater weights on
various portions of income distribution, have been proposed by a number of authors. For
purposes of statistical inference, the large sample distribution theory of the estimators of
those measures of economic inequality is required. The present paper was stimulated by
the use of bootstrap by Xu (2000) to estimate the variance of the estimator of the S-Gini
index. It shows that the theory of L-statistics (Chernoff, Gastwirth & Johns, 1967; Shorack
& Wellner, 1986) makes possible the construction of a consistent estimator for the S-Gini
index and proof of its asymptotic normality. The paper also presents an explicit formula
for the asymptotic variance. The formula should be helpful in planning the size of samples
from which the S-Gini index can be estimated with a prescribed margin of error.

Key words: asymptotic normality; consistency; economic inequality; exponential distribution; Gini
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1. Introduction

A substantial literature has been devoted to the construction of indices of economic in-
equality that are consistent with axiomatic systems of fairness. We refer readers to Sen (1997),
Blackorby, Bossert & Donaldson (1999), Cowell (1999), Giorgi (1999), Ryu & Slottje (1999)
and Silber (1999) for a survey of the area and main references.

This paper was stimulated by the use of bootstrap by Xu (2000) to estimate the asymptotic
variances of generalized Gini indices. We focus on the S-Gini index
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and its large sample estimation. In the definition of Iy , above, the parameter v is a fixed
positive number, F denotes the cumulative distribution function (cdf) of a random variable
X, F is the corresponding quantile function and u = E(X) denotes the mean of X which
is assumed to be finite and non-zero. Later, we also assume the finiteness of some higher
order moments of X, but no continuity-type assumptions are imposed on F. Thus, the results
of this paper are applicable to all cdfs, including those that are continuous and discrete.

The S-Gini index I ,, is well defined for some classes of cdfs F, depending on the value
of v. Yitzhaki (1983) subdivides the positive values of v into three regions by noting that the
values 0 < v < 1 reflect equality aversion, the value v = 1 reflects equality neutrality and
values v > 1 reflect inequality aversion. In the case of inequality aversion (v > 1) the index
Ig , is always well defined because the first moment y is finite by assumption. In the case
of equality neutrality (v = 1) the index Iy, is identically 0. For the equality aversion case
(0 < v < 1) the index I , is well defined provided that the rth absolute moment E(X|")
is finite for some r > 1/v. These moment assumptions describe the range of parameters for
which a large sample estimation theory for I, ,, is possible and, indeed, needed.

Several approaches have been proposed and used for estimating the S-Gini and related
indices of economic inequality. In particular, Mehran (1976), Nygéard & Sandstrém (1989),
Giorgi & Pallini (1990) use the theory of L-statistics in their studies. Barrett & Donald (2000)
use the theory of empirical and quantile processes to study the S-Gini and other indices of
inequality and poverty.

In this paper we demonstrate that L-statistics provide a most suitable and convenient
technical tool for developing a large sample estimation theory for the S-Gini index I ,. For
this reason we now express the S-Gini index I , in the form

1 1
Ip, =1+ ;Tr,v , where Tp = / F~ Y@ dv,(t) and ¥, (1)=(1-1)".
0
When v =1, T,(t) = —pu, andthus I , =0. When v = 2, I, isthe classical Gini index
1
Gp= EEE(|X1 -X,),
where X, and X, are independent random variables with cdf F. The quantity T, is the

asymptotic expectation or, in other words, the centring constant of the L-statistic (see e.g.
Chernoff et al., 1967; Shorack & Wellner, 1986),

= ()Y e

where X,., < X,., <--- < X, are order statistics of random variables X,, X, ..., X,,.
Consequently, the S-Gini index Iy , is estimated by the ratio

1
In,v =1+ ;Tn,v ’
where X denotes the sample mean of X, X,, ..., X,,. Using the definition of ¥, , we can

now rewrite the estimator /, , as follows:

n

1 . v o_ — 1\
In.v_l—jnuz((n_”'l) n—0)")X,.,.

i=l1
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The latter form of the S-Gini estimator I, ,, is the one that is most frequently used in the lit-
erature (see e.g. Weymarlf, 1980/1981; Chakravarty, 1988; Blackorby et al., 1999; Xu, 2000).

Whenv=1, T, ,=—X, and thus [, , =0. When v = 2, I, , is the classical Gini index
estimator (see e.g. David, 1968, 1970 and references therein),

Using the estimator I, ,, we develop a large sample estimation theory for the S-Gini index
I, aiming at optimal assumptions on the underlying cdf F.

The paper is organized as follows. In Section 2 we consider strong consistency of the
S-Gini estimator 1, , - The main result is formulated in Theorem 1. It says, loosely speaking,
that I, , is a strongly consistent estimator of 1 F,v for any value of v > 0, whenever I, ,
is finite. In Section 3 we consider the asymptotic normality of I, ,. The main result is
formulated in Theorem 2 where we show that the S-Gini estimator I, , is asymptotically
normal for the values v > % provided that some moment assumptions hold. In Theorem 2
we also give an explicit formula for the asymptotic variance of the appropriately centred and
normalized 1, ,. Section 4 illustrates the results of Sections 2 and 3 when the cdf F is
exponential or Pareto. We calculate a number of quantities that appear in Sections 2 and 3 for
the two distributions and present the results in Table 1. The results and their counterparts for
other distributions can be used to plan the sample size needed to estimate the S-Gini index
with a prescribed margin of error. The results of Section 4 in the Pareto case show that the
assumptions of Theorems 1 and 2 cannot be improved upon for arbitrary (i.e. general) cdfs. In
Section 5 we discuss approaches for estimating the asymptotic variance of 1, , - These results
are useful when constructing confidence intervals for the S-Gini index / Fo-

2. Strong consistency of 1, ,

We prove that the S-Gini estimator 1, , is strongly consistent under the same assumptions
on X that were given in Section 1 when the existence and finiteness of 7 .y Were discussed.

Theorem 1. If 0 < v < 1, we assume that E(|X|") < oo for some r > 1/jv. Ifv>1, we
assume that E(|X|) < oo (this assumption is automatically satisfied because the mean u is
finite). Under these assumptions, the S-Gini estimator I, , is a strongly consistent estimator
of I .

Proof. Under the moment assumption E(]X|) < oo the sample mean X isa strongly consis-
tent estimator of u. Thus, the theorem follows if we show that T, , is a strongly consistent
estimator of T ,. To prove the latter, we use Shorack & Wellner (1986 Theorem 5 pp. 666~
667). Having verified the assumptions of that theorem, we obtain that T, , is a consistent
estimator of T, provided that E(]X|") < oo for some r such that » > 1/v. When v = 1,
the latter assumption requires the finiteness of E(|X|") for some r such that 7 > 1. However,
when v = 1 we need only E(|X|) < oo, since T,,= -X, Tp;=—uand X is a strongly
consistent estimator of 4 under the assumption E(|X|) < oo.

3. Asymptotic normality of L,

We show that /n(f, , — I ) has an asymptotically normal distribution for any v > %,
provided that some moment conditions are satisfied. Section 4 shows that the assumption
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v > % cannot be relaxed in the Pareto case, and thus cannot be relaxed for the general case
(i-e. arbitrary cdf F) either.

Theorem 2. If% < v < 1, we assume that E(|X|") < oo for some r > 1/(v — %). If
v > 1, we assume that E(X?) < oo. Under these assumptions, Jn(l, , — I ) has an
asymptotically normal distribution with mean 0 and variance

o, = %(UF(\;, v) + 215, — Dogp(1,v) + (g, — D2op(1, 1),
where, for the values a, B € {1, v} and notation s A t = min(s, t),
op(@.p) = [ : / : (F&x A y) - FOF0)(1 - F@)* (1 - F)P " dx dy.
To apply Theorem 2 for constructing confidence intervals for the S-Gini index I , based
on /

,v» We need a consistent estimator of o ,27", . Such an estimator is given in Section 5 where
we also derive a confidence interval for I .

Proof. We start the proof with the representation

1 T -
VA = Ip) = SVA (T, = Tr,) = ﬁ”—«/ﬁ (X -

___1 7 Tn,u S~ 2
_ (le ﬁ)ﬁ (T, — Tp WA (X — )+ (}m2 ﬁ)n(x 2P
This reduces our investigation of the asymptotic behaviour of /n(I, , — I ,) to those con-

cerning /n(T, ,— Ty ) and Jn(X —p). Now /n(X —p) = —/n(T, | —Tg ), andsoto
derive the desired asymptotic result for \/n (I, , — I F,v) We need only know the asymptotic
behaviour of /n (Tn’v — T ). For this reason we use Shorack & Wellner (1986 Theorem 5(i)

p. 666). A routine verification of the assumptions of that theorem shows that, for any v > %,
the representation

1 n
\/;(Tn,v - TF.v) = ﬁ ; Yi,v + Rn ()
holds, where o
Y,,=— f (I{X; < x} - F(x))¥,(F(x))dx
—00
i -1
= v/ (IHX; <x} - F)(1 - F))"™ dx,
—00
and the remainder term R, 20 in probability when n — oo provided that
E(|X|") < oo for some r > 2/(2v — 1). The case v = 1 needs special attention. The
result above states that if v = 1, then (2) holds true with R, Boif E(IX|") < oo for some

r > 2. The latter moment assumption appears to be superfluous because in the case v = 1
the remainder term R, is identically 0. This is seen from the equality

1 n
T1—Tp = - Z Y1, €)
i=1
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which follows from 7,, | — T | = —X +p and also from the representation (see e. g. Shorack,
2000 p. 116)

oo
X, +n =/ (I{X; <x}— F(x)) dx.
When proving the asymptotic normality of /n (T, ; — T ;) weassume E(X2) < oo, but this

assumption is less stringent than the requirement E(|X|") < oo for some r > 2. Applying
both representations (2) and (3) to the right-hand side of (1), we derive

IF,v—l 1 ¢ /
Vn(, , IFV)——(J—Z )+ " (WEY.'J)*'&’ @

where the remainder term R, 5 0 when n — 0o under the assumptions of Theorem 2. From
(4) we conclude that «/n (1, , — I ) converges to a normal random variable with mean 0
and variance

1
OFy = _ZE((YI.V + U, = DY, 1)2)-

Under the assumptions of 'I'heorem 2, and using Shorack & Wellner (1986 Lemma 1 p. 663),
we verify that the variance orF y i finite and the formula stated in Theorem 2 holds. We also
note that aF » = 0 when v = 1. This is not surprising because both I n,1 and I, are equal
to 0.

4. The exponential and Pareto cases

For several parametric famxlxes the asymptotic mean 7 F,y of the S-Gini estimator L,
and the asymptotic variance o2 Foof /n(l, I F.») can be computed and expressed in terms
of parameters of the corresponding cdf F We illustrate this for the exponential distribution
with cdf

Fx)=1-¢?6"  (x>x >0; A>0);

and the Pareto distribution with the cdf
Xg\*
F(x)=l—(;) x>x3>0; 1>0).

For these two distributions, Table 1 presents explicit formulae for quantities that appear in
Sections 2 and 3 and, in particular, in the definition of a% - Using these, we can obtain, for
example, formulae for the asymptotic variance a,% , in terms of the parameters of the two
distributions.

In Table 1 the regions of possible values of A and v are given beside each formula only
if they are smaller than A > 0, the region where the exponential and Pareto distributions are
defined. In the exponential case all the quantities of Table 1 exist and are finite for any value
of A > 0 because exponential variables have finite moments of all orders. The situation is
noticeably different in the Pareto case because the number of finite moments depends on the
value of A > 0. We now discuss this case in detail.

We see from Table 1 that the formula for the S-Gini index / ,y holds true in the Pareto
case only when

1
A >max(1, —). &)

v
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TABLE 1
Formulae for the parameters of the asymptotic distribution of I,

Parameters Exponential Pareto
1+ Axg XgA
# S -1 B0
v—1 v—1
IF,V m—o—) w1 [A > max(1, l/v)]
1 xgl >3
Fbb 3 a-a-p 77
1 xgv}.
or(l,v) 2 G=Dor-DoAi—2) [A > max(1, 2/v)]
or(v,v) ; > xngA [l>1/(v—l) v > l]
F5 Qv — 1)A? 2 WA=-1D2(v-1r-2) 25 2

The regions of the values of A and v where the corresponding formulae are valid are given beside
each formula, provided the regions are smaller than A > 0 and v > 0.

When 0 < v < 1, (5)is equivalent to A > 1/v. If we reformulate this assumption in terms of
the moments of X, we see that it is equivalent to the finiteness of E(|X|") for some r > 1/v.
When v > 1, (5)is equivalent to A > 1. In terms of the moments of X, this is equivalent to
E(]X|) < oc. It follows that the assumptions of Theorem 2 are optimal in the Pareto case and
thus cannot be improved upon in general.

Examination of the Pareto case shows that the assumptions of Theorem 2 cannot be
relaxed. From Table 1 it follows that to calculate 0'127,1; we have to assume that

2 1 1
A>max(2, ;,v_%) and V>3, 6)

When % < v < 1, (6)isequivalentto A > 1/(v— %). In terms of the moments of X, the latter
assumption is equivalent to the finiteness of E(|X|") for some r > 1/(v — %). Furthermore,
when 1 < v < 00, (6) is equivalent to A > 2 which, in terms of the moments of X, is
equivalent to E(X?) < oo. Thus the assumptions of Theorem 2 are optimal in the Pareto case
and cannot be improved upon in the general case (i.e. for arbitrary cdf F).

5. Estimation of a%-‘v from a sample

In this section we discuss methods for estimating the asymptotic variance "%‘,v . If the
cdf F is given in a parametric form, then U%'v is a function of unknown parameters of F.
Replacing the parameters by their maximum likelihood or other estimators, we obtain the
corresponding estimators of agv,v . If F is not given in a parametric form, a non-parametric
estimator of cr}-,v can be constructed and used. For example, we construct a non-parametric
estimator of a%,v by replacing F everywhere in the definition of a%,v by its empirical coun-
terpart F, . This leads us to the estimator

n

1
20 = 25 (600 + 200y, = Dy (10) + (U, = D5,(1,1))
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of 0'12:,‘, in which s, (@, B) is a non-parametric estimator of o(c, 8), given by

n—1n-1

sn(a’ B = ZZ(#I(]")(O[, ﬂ)(xi+l:n - Xi:n)(Xj+l:n - Xj:n) ’

i=1 j=1

where 0 B) = a,,((;; A 1’) - ii)(l - L)a-l (i J ),,_1 |

n nn n n

To use the estimator sf‘ , for constructing confidence intervals for 1 FvrWe need to demonstrate
that sf_,, is a consistent estimator of a%’u . Hence, the following theorem.

Theorem 3. If the assumptions of Theorem 2 are satisfied, then s,f'u is a strongly consistent
estimator of o} .

From Theorems 2 and 3, we obtain the approximate 100(1 — @)% confidence interval
1, , %242 5, ,/+/n for the S-Giniindex I, . The confidence interval provides a consistency
check for confidence intervals obtained by the bootstrap methodology (cf. Xu, 2000).

The proof of Theorem 3 is technically complex and not particularly interesting in the
context of this paper, so we do not present it here.

6. Recent developments

~

Since the submission of this paper for publication, we have learned about a closely related
and very interesting paper by Barrett & Donald (2000). Using the empirical and quantile
processes approach, Barrett and Donald develop a general large sample asymptotic theory for
various indices of inequality and poverty, including the S-Gini index. Their investigations
are mainly based on the fact that indices of inequality and poverty are functionals of Lorenz
curves, and the Lorenz curves are (cf. Gastwirth, 1971) integrals of the corresponding quantile
functions. Naturally then, using appropriate limit theorems for quantile processes, Barrett
& Donald (2000) derive desired asymptotic results for Lorenz processes and, in turn, for
the indices of inequality and poverty. In particular, their approach enables improvement on
widely used methods based on considering only a finite number of Lorenz ordinates. For more
details on the empirical processes approach and references, see e.g. the monograph by Csorgd,
Csorgd & Horvith (1986). For further developments and more recent references concerning
Lorenz curves see, e.g., Csorgd, Gastwirth & Zitikis (1998).

In this paper we treat the integral and the quantile function F~! in

1
Ip,=1- 3[ F i - lar
! K“ Jo

together, while Barrett & Donald (2000) treat them separately. This is the main difference
between the two approaches. The advantage of our approach is that the generally ‘bad’ be-
haviour of the empirical quantile function F, ! pnear the two ends of the interval (0, 1) is
lessened by the operation of integration. Therefore, using this approach together with the
theory of L-statistics, we avoid the assumptions made by Barrett & Donald (2000) (i.e. twice
differentiability and compact support of F ') and obtain consistency and asymptotic normality
of the S-Gini index under only moment assumptions.
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